Chained Permutations

Dylan Heuer

North Dakota State University

$$
\text { July 26, } 2018
$$

Three person chessboard

Three person chessboard

Three person chessboard

Three person chessboard - Rearranged

Two new families of chessboards

The board $B_{5,3}^{-}$

The board $B_{4,6}^{\circ}$

General enumerative result

Theorem
The number of ways to place m non-attacking rooks on board $B \in\left\{B_{n, k}^{-}, B_{n, k}^{\circ}\right\}$ is

$$
\sum_{\left(a_{1}, \ldots, a_{k}\right) \in \mathfrak{C}_{m}(B)} \prod_{i=1}^{k}\binom{n-a_{i-1}}{a_{i}}(n)_{a_{i}}
$$

where a_{0} is defined as:

$$
a_{0}= \begin{cases}0 & \text { if } B=B_{n, k}^{-} \\ a_{k} & \text { if } B=B_{n, k}^{\circ} .\end{cases}
$$

Chained permutations

Maximum rook placement:

Permutation matrix form:

Chained permutations

Permutation matrix form:

One-line notation:

$$
0200-3104-3000-3420-0004-1032-
$$

Work towards an analog of Bruhat order

- With usual permutations, we can use adjacent transpositions to obtain weak order.

Work towards an analog of Bruhat order

- With usual permutations, we can use adjacent transpositions to obtain weak order.
- Thinking of a permutation in matrix form, we can think of an adjacent transposition as swapping adjacent rows.

Work towards an analog of Bruhat order

- With usual permutations, we can use adjacent transpositions to obtain weak order.
- Thinking of a permutation in matrix form, we can think of an adjacent transposition as swapping adjacent rows.
- There is a "natural" way to modify this in the case of chained permutations.

Work towards an analog of Bruhat order

- With usual permutations, we can use adjacent transpositions to obtain weak order.
- Thinking of a permutation in matrix form, we can think of an adjacent transposition as swapping adjacent rows.
- There is a "natural" way to modify this in the case of chained permutations.
- We can perform a swap of adjacent rows on the ith matrix, while simultaneously performing a corresponding swap of adjacent columns on the (i+1)st matrix.

Work towards an analog of Bruhat order

00012 - 00012 - 00123-

$$
\downarrow s_{3,2}
$$

00012 - 00102 - 00124-

Work towards an analog of Bruhat order

- We can use these transpositions to generate a poset, just like with usual permutations.

Work towards an analog of Bruhat order

- We can use these transpositions to generate a poset, just like with usual permutations.
- SageMath has been useful not only for its computational power, but also for its ability to visualize and work with graphs and posets.

Work towards an analog of Bruhat order

$k=2, n=3$, circular, fixed composition $(2,1)$

Work towards an analog of Bruhat order

Inversion number?

- It seems that there is a relatively "nice" analog of inversion number for chained permutations.

Work towards an analog of Bruhat order

00012-00012-00123-
$\downarrow s_{3,1}$

00102 - 00012 - 00123-

Work towards an analog of Bruhat order

00012 - 00012 - 00123-

$$
\downarrow s_{1,1}
$$

00012 - 00021 - 00123-

Work towards an analog of Bruhat order

00012 - 00012 - 00123-

$$
\downarrow s_{2,1}
$$

00012 - 00013 - 00123-

Work towards an analog of Bruhat order

00012 - 00012 - 00123-

$$
\downarrow s_{3,2}
$$

00012 - 00102 - 00124-

Work towards an analog of Bruhat order

Inversion number?

- It seems that there is a relatively "nice" analog of inversion number for chained permutations.

Work towards an analog of Bruhat order

Inversion number?

- It seems that there is a relatively "nice" analog of inversion number for chained permutations.
- We can start with a chained permutation and algorithmically change it to the identity.

Work towards an analog of Bruhat order

Inversion number?

- It seems that there is a relatively "nice" analog of inversion number for chained permutations.
- We can start with a chained permutation and algorithmically change it to the identity.
- In fact, it appears to be the case that using this analog of inversion number,

$$
\sum_{w \in P_{n, k}} q^{i n v(w)}=\prod_{i=1}^{k}\left[\begin{array}{c}
n-a_{i-1} \\
a_{i}
\end{array}\right]_{q}[n]_{a_{i}}
$$

(the q-analog of the counting formula),
just as it is with usual permutations.

Thank you!

