Chained Permutations

Dylan Heuer

North Dakota State University

July 26, 2018
Three person chessboard
Three person chessboard
Three person chessboard
Three person chessboard - Rearranged
Two new families of chessboards

The board $B_{5,3}^-$

The board $B_{4,6}^\circ$
General enumerative result

Theorem

The number of ways to place \(m \) non-attacking rooks on board \(B \in \{ B_{n,k}^-, B_{n,k}^\circ \} \) is

\[
\sum_{(a_1, \ldots, a_k) \in \mathcal{C}_m(B)} \prod_{i=1}^{k} \binom{n - a_{i-1}}{a_i} (n)_{a_i}
\]

where \(a_0 \) is defined as:

\[
a_0 = \begin{cases}
0 & \text{if } B = B_{n,k}^- \\
 a_k & \text{if } B = B_{n,k}^\circ .
\end{cases}
\]
Chained permutations

Maximum rook placement:

Permutation matrix form:
Chained permutations

Permutation matrix form:

One-line notation:

0200 – 3104 – 3000 – 3420 – 0004 – 1032–
Work towards an analog of Bruhat order

- With usual permutations, we can use adjacent transpositions to obtain weak order.
Work towards an analog of Bruhat order

- With usual permutations, we can use adjacent transpositions to obtain weak order.
- Thinking of a permutation in matrix form, we can think of an adjacent transposition as swapping adjacent rows.
Work towards an analog of Bruhat order

- With usual permutations, we can use adjacent transpositions to obtain weak order.
- Thinking of a permutation in matrix form, we can think of an adjacent transposition as swapping adjacent rows.
- There is a “natural” way to modify this in the case of chained permutations.
Work towards an analog of Bruhat order

- With usual permutations, we can use adjacent transpositions to obtain weak order.
- Thinking of a permutation in matrix form, we can think of an adjacent transposition as swapping adjacent rows.
- There is a “natural” way to modify this in the case of chained permutations.
- We can perform a swap of adjacent rows on the ith matrix, while simultaneously performing a corresponding swap of adjacent columns on the $(i + 1)$st matrix.
Work towards an analog of Bruhat order

\[\text{00012} - 00012 - 00123 - \]

\[\downarrow s_{3,2} \]

\[\text{00012} - 00102 - 00124 - \]
Work towards an analog of Bruhat order

- We can use these transpositions to generate a poset, just like with usual permutations.
We can use these transpositions to generate a poset, just like with usual permutations.

SageMath has been useful not only for its computational power, but also for its ability to visualize and work with graphs and posets.
Work towards an analog of Bruhat order

$k = 2, n = 3$, circular, fixed composition $(2,1)$
Work towards an analog of Bruhat order

Inversion number?

- It seems that there is a relatively “nice” analog of inversion number for chained permutations.
Work towards an analog of Bruhat order

\[\text{00012} \rightarrow \text{00012} \rightarrow \text{00123} \rightarrow \]

\[\downarrow_{s_3,1} \]

\[\text{00102} \rightarrow \text{00012} \rightarrow \text{00123} \rightarrow \]
Work towards an analog of Bruhat order

\[
\begin{array}{c}
00012 \rightarrow 00012 \rightarrow 00123
\end{array}
\]

\[
\downarrow s_{1,1}
\]

\[
\begin{array}{c}
00012 \rightarrow 00021 \rightarrow 00123
\end{array}
\]
Work towards an analog of Bruhat order

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{array}
\quad
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{array}
\quad
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\]

\[s_2,1\]

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{array}
\quad
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
\end{array}
\]

\[00012 \rightarrow 00013 \rightarrow 00123\]
Work towards an analog of Bruhat order

\[00012 - 00012 - 00123 - \]

\[\downarrow s_{3,2} \]

\[00012 - 00102 - 00124 - \]
Work towards an analog of Bruhat order

Inversion number?

- It seems that there is a relatively “nice” analog of inversion number for chained permutations.
Work towards an analog of Bruhat order

Inversion number?

- It seems that there is a relatively “nice” analog of inversion number for chained permutations.
- We can start with a chained permutation and algorithmically change it to the identity.
Work towards an analog of Bruhat order

Inversion number?

- It seems that there is a relatively “nice” analog of inversion number for chained permutations.
- We can start with a chained permutation and algorithmically change it to the identity.
- In fact, it appears to be the case that using this analog of inversion number,

\[
\sum_{w \in P_{n,k}} q^{\text{inv}(w)} = \prod_{i=1}^{k} \left[n - a_{i-1} \right]_{q}^{a_i} [n]_{a_i}
\]

(the \(q\)-analog of the counting formula), just as it is with usual permutations.
Thank you!